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MULTISENSOR DETECTION STUDY

1.0 INTRODUCTION
p

The intent of the work which is reported herein is to explore the

possibility that improvements can be made in the initial detection of

signals in noise using multiple sensors, arbitrarily located, by basing the
p

detection strategy upon a multivariate statistical approach.

1.1 Background

This question of detection is part of the larger task depicted by

Figure 1-1, in which the data from m sensors are somehow to be combined

and operated upon to produce "decisions and numbers". The "decisions" we

shall be concerned with here consist of detection of a source of interest

in the medium being considered (e.g., underwater) along with whatever

parameter estimates ("numbers"), are required to carry out detection. We

restrict our attention to a single source, whose waveform we denote by s(t;e)

to indicate variation in time and dependence upon certain parameters e.

Whether this source of interest is present or not, the medium is such that

there exists at each of m sensors a noise waveform ni(t,qi), i=1, 2,...,M;

the noise parameters {nil are in general different in value at each sensor.

In this work, the signal and noise parameters are considered to be unknown

a priori and therefore must be estimated. Also both random and deterministic

signals are considered.

By "sensor" we shall refer in this work to whatever appropriate trans-

ducer and conditioning may be required to acquire data, plus additional

processing such as sampling and analog-to-digital conversion. In some instances

a discrete Fourier transform (DFT) is performed to obtain what is taken

to be "sensor data". The physical locations of the sensors are assumed to be
.. . .. .... . ... .... ..I. . .. .. ... . .. .I... .. .... . . ... . .... .M ] l l .. . ..." .... . .... I I ... . ..Ii ..
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different, so that observation in both space and time is performed by

collection of sensors, whose outputs are assumed to be available to a

centralized processor, not necessarily in "real time". Our primary concern

is with the structure of this processor; therefore, our modelling effort

begins with the "data" x.(t) from the m channels, as called out in Figure

1-1.

p 1.1.1 Concept of Data Vectors,Matrix..

At a given sampling time tk the data from the sensors may be

considered as an (mx 1) vector.x4. Over an observation period if n such

vector samples are collected, the totality of the data may be represented

by an (mxn) matrix X as illustrated in Figure 1-2. The columns of the

matrix are thevector data samples:

Sx = } "2 *~ (1-1)
iX

The elements of the data matrix are

* Xik = xi(tk),i = 1,.2,...,m,

k = 1, 2,...,n. (1-2)

As discussed in Section 1.3, for narrowband signals and noise, the

{Xik} can be considered complex numbers describing the waveform components

referenced to the center frequency. For broadband signals and noise,.the

{Xik} are more appropriately taken to be the complex Fourier coefficients

of the input waveforms.

1.1.2 Objectives of the Study

An earlier work (1] explored the general subject of maximum likelihood

(ML) signal detection and estimation when the data vector and matrix formulations

are used. It was shown that in general, ML processors of vector data are

analogous to their familiar scalar counterparts, but are not simple



4-2

CA

III

:1L

CL C

C Cc

Im



"building block" or modular extensions of scalar processors. For example,

the analogy to noise power (variance) on a single sensor is, for multiple

sensors, the determinant of the matrix of covariance between pairs of

sensors. This quantity is a nonlinear combination of the single channel

variances and also of correlations; thus something more than just putting

together m scalar processors is required to process m sensors properly.

In this study, the theme of ML detection using data from multiple

sensors is pursued further, with the following objectives:

(a) Describe the theoretical performance of the ML detector of

multisensor (multivariate) signals in noise, using conventional figures

of merit.

(b) Develop an computer program which implements the ML detector

and which can be used in experiments, also giving an indication of the

complexity of the ML multivariate detector.

1.2 Methodology

In accordance with its objectives, this study employs the following

analytical procedures.

1.2.1 Theoretical Base

In order to determine the maximum likelihood detection strategy

using the sensor data these procedures are followed:

(a) Model the joint probability density function (pdf) for the data

X at the sensor outputs under the hypotheses H0 : noise only, and HI: signal

plus noise.

(b) Take the pdf's p1(X;e,nIH 1 ) and p0(X;nIH O ) to be likelihood

functions with 0 and n representing signal and noise parameters, respectively.

Maximize these likelihood functions by deriving maximum likelihood (ML)

estimates 6 and A for these parameters, which are NOT ASSUMED TO BE KNOWN

a priori.
A5
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(c) Use the ML detection criterion

HI

A(X) = pl(x;6,n H1)/po(x;iIHo) H 1 (1-3)
H0

to find the statistic or function of the data z(X) which tests the

hypothesis HO. That is, the above equation reduces toII
H
1

Z < z0  (1-4)
H 0

where z is a threshold.

(d) Determine the distribution of the test statistic z(X) so that

the probability integrals

Q(zo;nIH O) = Pr{z>zoIH O} = Pr{H0 rejected IH01 (1-5)

and

Q(zo;e,nlH i) = Pr{z>zoIH I } = Pr{H0 rejected 1H1 }  (1-6)

may be computed.

1.2.2 Application

The ML detection strategy is applied to the sensor detection problem

by carrying out the next steps:

(a) Compute the thresholds ZoF which satisfy

Q(ZoF;nIHo) = PFA (1-7)
for various values of the false alarm probability PFA and using those

thresholds, compute the detection probability

P D = Q(ZoF;enIH1) (1-8)

as a function of the actual values of the parameters (thus obtaining

receiver operating characteristics or ROC).

p



,

(b) Relate the statistical detection parameters to the system

variables (number of sensors, number of samples) as well as to conventional

input data parameters (signal-to-noise ratios, signal and noise 4nter-sensor

correlations, signal phases, etc.) in order to show the dependencies and

to permit comparisons with other systems.

(c) Develop a computer program which accepts data in the form

studied and which performs the statistical procedures involved in the

detection strategies; exercise the program with simulated data to the

extent necessary to verify that it works as predicted by theory.

1.2.3 Assessment

The performance of the multivariate detection strategy is to be

assessed with respect to the following considerations:

(a) Minimum detectable signal.

(b) Complexity and storage requirements of implementation.

(c) Compatibility of configuration with other signal processing tasks.

1.3 • Models and Notation

A glossary of mathematical symbols and notation employed is given at the

end of the report. The concept of denoting the n samples of waveforms

at m sensors by a data matrix X has been introduced previously. Although through-

out the report the data is considered as narrowband (complex) time domain sam-

pled data, as described next, the model used can also be extended to broadband

data as developed by discrete Fourier transforms, as shown in Section 1.3.2.

Complex data are treated to cover the subject thoroughly; real (baseband) data

is somewhat simpler than the complex, and can be derived from it.

1.3.1 Narrowband Signals ana Noise

The notation which is used is based upon the assumption that the

vector x(t) of the m waveforms, when referenced to a given frequency and

phase, can be represented by the narrowband (Rician) decomposition



I

xt) = u(t) cos(wt + - v(t) sin(wt + (1-9)

in which u(t) and v(t) are the in-phase and quadrature components of x(t)

with respect to cos(wt + 0). We may just as well represent x(t) as the

(lowpass) complex vector waveform

?(t) = u(t) + jv(t), j rT, (1-10)

and the matrix of samples is

X =I xikJJ = IlUik + JVikIJ = U + jV. (1-11)

The columns of these matrices retain the interpretation

(xik)k =k = x(tk), (1-12)

while the rows are the observations of the output of a single sensor over

time:

(x'k'lI~ 0 - {xi(tk), k = 1, 2,...,n). (1-13)

An example of how this data may be collected in practice is diagrammed in

Figure 1-3a.

1.3.2 Multivariate Gaussian Model

Now if the waveforms are from stationary, jointly Gaussian random

processes with (mxm) covariance matrix z =leirlI and mean vector

= a + b, then the pdf for a single vector data sample is

p( Y, Z) = [(2)mlzl - exp(.4[ (.k-a_)'z(u -a)

+ (k-)1-14)

By noticing that the scalar quantities in the exponent may be understood

as traces of matrices we can write

_= tr[u-a) '-(u-a)] (scalar)

= tr[i -( ! k-)(.k-a )'J (1-15)
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since tr(PQ) = tr(QP). Therefore the pdf of k can alternately be written
p(Ak;- ) = [(2w)m IEJ] 1 etrI-1 -l(-)(_ - (1-16)

This form takes advantage of the facts that

tr[PQ) = tr[P.Re{Q)], P = P'(real), Q = Q*;(-7)

tr[PQ1] + tr(PQ2] = tr[P(Q1 + Q2)1;  (1-18)

and that )( + (_Vk-b)(!k-b)' = Re{k_*1. (1-9)

For independent data vector samples, the joint pdf for all the

observed data is given by

p(X) = 7[ p(A) [(2)mll] -n exp- [( -a)'
k=1 (- a)

+ (V-b) ' 1-(_vk-b) ]I

= [(2 )mI i]-n etrIf z- ( k-(- k-)*~ ( 1-20)

k=1

Also', by defining a matrix (m x n) whose columns all are equal to the

mean vector,

M- p_ _ _.. ) (1-21)

then we may utilize the observation that

= (X-M)(X-M)* (1-22)
k

to write, finally,

p(X) = [(2")mJIE]-n etrI4 I(X-M)(X'M) 4. (1-23)

The identification of the mean vector and covariance matrix with signal

and noise parameters will be made in the text in various ways. However

throughout the report we shall assume that Gaussian form is suitable for

Srepresenting the data.



1.3.3 Extension to Broadband Signals and Noise

In many applications the narrowband representation just discussed

is not suitable. However, the same pdf model (1-23) can be used if the

interpretation of the data matrix X is changed from time samples to Fourier

coefficients, as illustrated in Figure 1-3b.

Consider that the time sampling takes place as previously described

and that the n (real) samples from each sensor are transformed by a discrete

Fourier transform (OFT). A new (complex) data matrix F = 1'ciril is then

created. Its element at the i:th sensor and r:th frequency bin is given

by (7]

n
-. ,~r(k-1)ir = n Xl w = exp j2w/n}. (1-24)

Assuming that the time samples have zero means, the covariance

between elements is

n n

E)~r~ 4
=. E)1 C,4 wr(k 4I)5(t-) (1-25)2~~s n- = IXkxp,(

If the time sample vectors kare independent, then

nIfe tm sml vetr arinepenette

n
E irps -L E~xikx w (r-s)(k-1)

_2~ - = p  (1-26)
Cip Jw(rs)(k-I) ni 6rs (-6

K=1

That is, if the 1k are independent, then so also are the frequency sample

vectors 4r- which form the columns of F. and it is also evident from (1-26)

that

11m
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= 1= E k independent.* (1-27)

For x(t) real, the element obey the symmetry relationships

ir = i,n-r' r = 1,2,... ,n-1 (1-28)

so that in total for each sensor the n time samples produce n spectral

samples (. +1 real n - 1 imaginary). If a subset of nF< - I frequencies

is selected for processing (r=r >O to r0 + - 1<-), then there are

complex vectors in the data base.

1.3.4 Distribution of DFT Components

The real and imaginary components ErR and rl of these vectors are

independent, with covariance matrix

E--n (1-29)

Therefore the nF vectors have the joint pdf

r=l

If the time samples contain a deterministic signal, then (1-33)

is modified to become

-nF
p(F;n ) F [(2 m 2n E ) F exp 1-n 4 -( Er - tr)l

(1-31)

where _r is used to write the OFT component vectors of the signal.

It is evident, then that solution of the narrowband detection

problem for the time-sampling model of the data X will furnish also the

solution of the broadband detection problems for the DFT model of the data

*The independent sampling assumption is not difficult to justify in the
case of one sensor since it is a matter of bandwidth. For multiple sensors,
one can expect cross correlations to occur between different sensors at
different times for directional sources. By ignoring this, in effect we
are requiring that either the sensor field is small or that the data are
aligned in time (i.e., the array is steered in the direction of the source).



p

F when it is assumed that t. - j_ This assumption corresponds to a signal

whose spectrum is "flat" over the bandwidth spanned by the nF frequency

bins. For this reason, only the narrowband, time domain case is treated

in detail.

S p
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2.0 MULTIVARIATE MAXIMUM LIKELIHOOD DETECTION STATISTICS

In this chapter the likelihood functions corresponding to hypotheses

concerning signal and noise parameters are formed and used to derive statistics

or functions of the data for testing the hypotheses (detection). The true

values of.the parameters are treated as unknown and are estimated so as to

maximize the likelihood funotions under the given hypothesis.

2.1 Unknown Deterministic Signals

If the signal portion {4) of the data vectors may be considered to be

constant over the interval in which the samples are observed, then we may

use the model

E{_ k  = s, k = s, k = 1, 2,...,n. (2-1)

This model corresponds to a signal whose amplitude and phase with respect to

the reference frequency and phase are "slowly varying" or constant (though

different in value at each sensor), an idealistic extension of the narrowband

assumption

Bandwidth (signal) << center frequency (2-2)

The covariance matrix r of the data in this case corresponds to that of the

noise component.

If instead of time samples the data are Fourier coefficents, the

assumption that the mean vector is a constant (over frequency) corresponds to

a signal whose spectrum is flat over the n frequency bins.

Detection of the signal under these assumptions then is equivalent to

choosing between the hypothesis

H: 0 =. (2-3a)

and its alternative H1 : _ $0. (2-3b)

2.1.1 Multivariate Processing

The pdf of the data given the presence of a signal is

p(X;E,TfH1 ) = [( 2 )mjzj]-n etrl Z-I(x-M)(X-M) (2-4)

i p Taking this function for the likelihood function corresponding to H1 and



maximizing it with respect to the unknown parameters y and E results in [1-3]
n1- (2-5)

tn
k=1

and

(Ak ( )(xj)* kA (2-6)
k=1

That is, the ML estimates for the mean vector p and the covariance matrix

r are the sample mean vector u and the sample covariance . If analogous

to the matrix M previously defined, we define the (m x n) matrix

XO0 (2-7)

then we can write

I
1_ (XX0)(XX 0). = 2n (xx* - X0X0*)

(X-14)(X-M)* M. R.- ( -)* (2-8)

We are not here concerned with the properties of these estimates, except

that they are statistically independent as will be discussed. Substituting

the estimates in the pdf (2-4) yields the H1 likelihood function

LI( = max p(X;u,EIH I)= [(2)mll]
-n e-mn. (2-9)

Under H0 the mean is assumed zero and the covariance ML estimate is

-n 1I
10 =  '-T k - * =  L XX * = A (2 -10 )
0 Tn.-k-- 2n 2n 0

with the resulting likelihood function

= max -n emn.
L0 (X) = max p(x;EIH O) [(2v)m oI -  (2-11)

The maximum likelihood detection in this case would be implemented by 
the

test of the statistic

^1(x) = I%1 
- xx~

A M - X0X(* (2-12)
JIAI015



II

the ratio of the determinants of the estimated covariance matrices. This

expression may be reduced to another form as follows:

A(mX) = IAI  IA0! Al114+n U*^ I+nA- _*l. (2-13)

liddleton [4] gives the identity

,I')1o,
II + YGj I exp) tr Gri (2-14)

here, since tr [(A-l_*)r] tr [A- *A-r1*]

= ( _*j_).r, (*A-_ is scalar)

we have A(X) exp r- -ni*A )r/r

-explin [1 + niA-i] = + nij*rj (2-15)

0 The ML detector performs the test

H0Sz(X) = W A- ZO' zO .' (2-16)

Computational forms are to be discussed in another section; z _r next

concern is to determine the distribution of thins test statistic so that

probabilities of false alarm and detection may be calculated.

2.1.2 Distribution of the Multivariate Test Statistic

If the data were real instead of complex, then the test statistic

(2-16) could be identified with the "Eotelling T2 statistic" [2, 5), so

16



=

named because for m=1 it reduces to the square of the familiar Student's

t-statistic (used for testing the mean of a normal population of unknown

2variance). It is shown by Anderson [2] that the T statistic is distributed
as Fisher's noncentral F-statistic with m and n-m degrees of freedom:

z(X) distributed as _n- Fm,n-m(), X real, (2-17)

where the noncentrality parameter A is

X = na' z1a, (2-18)

to use a Refc) to represent real data (E is the true noise covariance

matrix).

The question now is, what-is the corresponding distribution for

complex data? In Appendix A it.:is shown that in this case
z(X) distributed as m , x complex, (2-19)

where the noncentrality parameter now is
A= na' 1 a +nb' z- b = n * -1 

. (2-20)

2.1.3 Combined Single-Sensor Processing

The stated objectives of this study include determining what

improvements in detection performance may be obtained by using multivariate

processing of multiple sensor data, rather than some form of modular

or "built up" approach based upon single-sensor processing. The fact

that the ML detector has been shown to be indeed a multivariate processor

is reason enough to expect improvements. However, it is natural to wonder

just how much improvement can be expected, since multivariate processing

at least seems to be a complicated procedure.

In order to provide a measure for detection improvements,'we now

consider ways of combining single-sensor detection processing (performance

figures of merit are discussed in Chapter 4). The test statistic for a

single-sensor is found by substituting m=1 into the multivariate expression,

(t-12) to get at the ith sensor
p
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'2 ' a.. + nli2

YO' = i nY -I

=1 + nIji 2/a ii (2-21)

where

a k 2n (2-22a)

k=1

and

= n E(2-22b)
k=1

are the sample variance and mean. From (2-19) we know that

zi(X i) = njlIij
2/aii distributed as -i F2 2 n2(.) (2-23)

and the noncentrality parameter v is related to the true mean and

variance at sensor i by

n'u ,2 , 2 (2-24)

One method for combining these functions of the data at single

sensors is to sum or average them, as illustrated in Figure 2-1 when

the combining operation is addition. That, is we can create a single

test statistic from the m sensors by calculating

m

^c (x) m Ai(xi)

n i =1

= 1 + m j i i, (2-25)

Another method which follows naturally from the multivariate case is

to combine the single sensor.test statistic by forming their product.

In effect, this is the multivariate solution for the special case of

independence between-sensor noises.



Unfortunately, the distribution for either of these combinations

has not been found, so their detection performances cannot be calculated.

A method which can be evaluated is the following: perform individual

detections for each sensor. If the decision at sensor i is "SIGNAL,"

assign the value yi = 1; if the decision is "NO SIGNAL" at the single sensor

i, assign the value yi =0. Then add up the {yi) and decide for the

collection of sensors whether a signal is present using the rule

. SIGNAL

z6  ~y 1  i N k, O.,k<m. (2'26)
d NO SIGNAL

This type of "majority vote" technique may be evaluated fairly readily.

The threshold (identical) at each sensor is chosen by requiring that

m
P-zd m r (lPF)m-r = PFA(given) (2-27a)Pr{zd ; kJHo 0) r) F PF

r=k

and solving for PF as a function of PFA and k. Then the required

individual sensor detection parameters (all equal to Xd) are found by

requiring that

Pr~z k{H} = \r)PD 1-Dmr = PD( given)  (2-27b)

r=k

the solution for p0 can be related to XD"

Without regard to the distribution of the data (except assuming

sensor data are independent) we may calculate PF and PD for given PFA

and PD. For PFA= .01 and PD= .9, the results are

m Pf PD decision rule

2 .1 .9487 2 out of 2 (k =2)

3 .0589 .8042 2 out of 3 (k = 2)

4 .0420 .6795 2 out of 4 (k =2)

5 .1056 7534 3 out of 5 (k= 3)

10 .1504 .6458 5 out of 10 (k= 5)

20 .2498 .6145 10 out of 20 (k = 10)
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FIGURE 2-1. MULTIVARIATE VS. COMBINED SINGLE-SENSOR PROCESSING.
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The value of PF determines the threshold and one then computes the

X required to achieve a single sensor detection probability of pD.

P How this is done is shown in Section 3.1; each sensor decision is based

on the F-statistic distribution (2-19) with m=1.

2.2 Random Signals

If the signal portion {4) of the data vectors may be considered

to be independent samples of an m-dimensional, zero-mean random process,

then we may use the model

E{Xk) = 0, k = 1, 2,...,n. (2-28)

The covariance matrix z of the data in this case corresponds to

that of the noise component lus that of the-signal comppnent, when present.

Detection of the signal under these assumptions then is equivalent

to choosing between the hypothesis

0 noise O (2-29a)

and its alternative H1 : = Enoise + Esignal :l (2-29b)

2.2.1 Multivariate Processing

The pdf of the data given the presence of a signal is

p(X;ElH 1) = [(2w)mj 1 ]-n etr{--l 1 XX*), (2-30)

where £1 £noise + Isignal' Maximizing with respect to the unknown matrix

1 results in the estimate

n

E __~k~ -1A0 (2-31)
1 2n AA 2n 0

k=1

and substituting the estimate in the pdf yields the likelihood function

LI(X) = [(2 )m E11]-n em n. (2-32)

The H0 likelihood function was found previously (equation (2-11)).

Immediately we find that the likelihood ratio is identically one for testing

, these hypotheses because both E0 and r are estimated by the same quantity,



A0/2n. Put simply, we cannot tell the difference between signal plus noise

and noise only, under these assumptions. Therefore, the hypotheses need

to be modified by additional assumptions.

Let the noise at each sensor be assumed independent of noise at

different sensors, that is, let us take E0 to be diagonal:

H6: E =dAia(ais c 2 .-- a m -E (2-33)

Under this hypothesis, the pdf of the data is

p(X; F0IH') = 27r)m iT O~] exp 12 IxikIoI . (2-34)
i=l i=1Ik=1

Maximizing this pdf with respect to the noise powers {a?) yields the estimates
n 2

= L Ix - (2 ii (2-35)
Gi 2n E Z IIikI 2n

k=1

and the likelihood function

L0 (X) = 2)m in e- n. (2-36)
i=1I

The likelihood ratio test then becomes

1/n Iol TAo) H01 ,-3
(X) 1. (2-37)

1 0

that is, if the product of the diagonals of the sample covariance matrix

AO is greater than its determinant, then we decide that there is some

correlation existing between data from different sensors because a signal

is present.

For example, suppose that we are examining data. from two sensors

(m=2). Then the test is

H
l 1A/n a 11a22  1 (2-38a)

-1 R(x) Ha6

112 2



or

1a1212 H1
R(X) a a Z . (2-38b)a11a22 H6

0

Here R(X) is the estimated square of the cross-correlation coefficient

between sensors 1 and 2:* ~n2
l i>l xij2kI 2

R(X) k=1 2) 1 12 12. (2-38c)

If the data in this case were the Fourier coefficients at a single

frequency, then R(X) would correspond to what is called the "magnitude

squared coherence function" estimate at that frequency [8].

For m sensors we can interpret the test statistic given by (2-37)

by further development:

0oii =-I + R 1  exp E Lkff tr(Rr) -. 1, (2-39)

In this relation we have used (2-14) and have defined the matrix of sample

correlation coefficients by

0 P12  613 .. m

512 0 P23.... P2m a.- " "p.r ir , ifr.R 
rir. 'iiarr

Lm P2m 53m ... 0 (2-40)

The trace of R is zero, and we can rewrite (2-39) as

YtrR2 -1 trR3  . 0. (2-41)
2 H6

Now, the traces of the powers of R are
trR 2 = . #rOi=2 ~r 2

i rirSi



trR3 = ir Orp pi' e t c . (2-42)
i r p

Since I~irl<1, we can see that an approximation to the test (2-41)

would be to use the first term, or the-statistic

z(x) = trR 2(X) = lir 2

i<r

92 lk* ik xrk I~

iikl Xrkl

This quantity is simply the sum of the magnitude squared of all the measured

oorrelation coefficients between sensors.

2.2.2 Distribution of the Multivariate Test Statistic

In order to set a threshold for the test, we need to determine its.

distribution. For two sensors this task is not too difficult; in Appendix

D, the pdf for z(X) = P 2 is shown to be

p(z) = (n-1)(1-P 2)n (l-z) n-2  F1(n,n;1;p2 (2-44)
12 2 1 n;p 12z), 2-4

where P12 is the true correlation coefficient and the 2F1( ) is the Gaussian

hypergeometric function. This expression is in complete agreement with the

pdf for the magnitude squared coherence function estimate reported in [8],

which also gives the distribution function (see Figure 2-2)

P z(z) Prf{z<Zo

Z 12 1 0  F 22- -p---) 2F1(-k,1-n;1;o12Zo).

10 k=0 - 12 0  (2-45)

* The more general case is straightforward but extremely complicated

[9, 10]; so much so, that the general practice among statisticians is to

calculate moments of the test statistic (and these are tractable for H6 only!).
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(from (8])



Then the probability of rejecting H6 (false alarm) is obtained by fitting

a pdf to the moments. In Appendix B it is shown that the moments of

z(X) = II + RI-1 are

m B(n-v+i-k, k-i)
E~z?) =JT Bhlkk1) (2-46)

k=2

By noting that

B(n-v+l-k, k-i) = d x n-k-v (i-z) k-2

fodx x -  p8 (x;n-k+l, k-i) (2-47)

we are able to say that the inverse of z is distributed as the product of

m-1 independent beta-distributed variables. But again, this is not especially

helpful for more than a few sensors. So the moment method is the reasonable

way to proceed, and is considered further in the next chapter.

I
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3.0 THEORETICAL CALCULATIONS

A large part of the work consists of obtaining numerical results

to portray the theory developed and to enable assessment of the

detection procedures. In this section the various computational

methods used are explained and the results tabulated. Computational

features of any software for implementing the detectors are considered

separately in another chapter.

3.1 Probability Integral for the F-statistic

Both detection statistics being compared may be treated by

considering the probability

Pr{F2n 2(nm)(4)>n4 =fdF p(Fln,m;x).

)n

Q(n12n,2(n-m);,) (3-1)

This probability is given by [6]

*k
Q(nl2n,2n-2m;A) = e-k! I(n-r, m+k) (3-2a)

k=O

where x n-m (3-2b)
n-m + mn

and Pearson's incomplete Beta function is given by

I x(n-m, m+k) = 1 - Ii x(m+k, n-m)

0x nml(l_-0 m+k-l(33

=f dc B(n-m, re+k)(3)

* A particularly simple computational form is

m+k-1

I (n-m, m+k) = xn-m ( lx) (n-m)r, (3-4)

r=O



using (n-m)r (n-m)(n-m+l).. .(n-m +-r-1). (3-5)

3.1.1 False Alarm Threshold

For no signal, X=O and it is obvious from equation (3-2) that

the probability of false alarm is computed using

PFA = Q(zo12n, 2n-2m,O)

= I (n-mm), x - n-m
xO 0 n-m + mz0  (3-6)

Since we wish to calculate the threshold z0 (or x0 ) for given values

of PFA' it was convenient to perform the calculation of (3-6) using

(3-4) on a calculator (hp 34C), iterating on x0 until the desired

P was obtained. (Program P-i).
FA

For the special case of m=, which applies to a single sensor,

(3-6) reduces to the simple form (see (3-5))

Q(z0 12n, 2n-2) = xn- (3-7)

Table 3-1 gives z0 and x for PFA = .1, .01, and .001 respectively.

3.1.2 Detection Probability

Given the threshold corresponding to a chosen false alarm

probability the probability of detection PD is computed using (3-2) with

n= zO. That is, PD = Q(zOl2n, 2n-2m,x) = PD(x). This was done using

the FORTRAN program P-2. The results are tabulated in Table 3-2.

The behavior of the probability of detection can be understood

by considering Figures 3-1 and 3-2, which are plots of data selected

from the tables.



PFA m n
10 20 50 100 200

10-T 1 .774267 .885867 .954095 .977010 .988496
2.6239 2.4479 2.3375 2.3296 2.3160

2 .63164 .810237 .922922 .961279 .980595
2.33272 2.10604 2.00436 1.97375 1.93932

3 .50992 .743495 .89501 .947135 .973477
2.24255 1.95499 1.83779 1.80471 1.78913

4 .40058 .68141 .868716 .933764 .966738
2.24457 1.87018 1.73793 1.70243 1.68591

5 .30097 .62247 .84345 .920878 .960233
2.32259 1.81951 1.67046 1.63248 1.61514

10 .35793 .72559 .860288 .929548
1.79384 1.51276 1.46161 1.44004

20 .510666 .74769 .872118
1.43734 1.34981 1.31970

10-2  1 .599484 .784760 .910298 .954548 .977124
6.0129 5.2112 4.8285 4.7140 4.6589

2 .45595 .6982 .87207 .93482 .96711
4.77289 3.89029 3.52073 3.41651 3.33284

3 .3437 .62593 .83929 .91779 .958431
4.45553 3.38653 2.99990 2.89622 2.84809

4 .25001 .56125 .80925 .90209 .95041
4.49976 3.12695 2.71069 2.60488 2.55670

5 .17098 .50175 .78095 .88721 .94279
4.84864 2.97907 2.52443 2.41545 2.36658

10 .25395 .6541 .81954 .90792
2.93778 2.11527 1.98177 1.92695

20 .43655 .69929 .84515
1.93603 1.72009 1.64900

10-3  1 .464159 .695193 .868511 .932603 .965883
10.389912 8.330548 7.418375 7.154455 7.029047

2 .3349 .60661 .82662 .91051 .95455
7.943864 5.836551 5.033897 4.815993 4.713792

3 .23885 .53459 .79131 .89173 .944863
7.435699 4.933357 4.131727 3.925773 3.831945

4 .16285 .47145 .75936 .87459 .936
7.710930 4.484463 3.644332 3.441430 3.350427

5 .10253 .41445 .7296 .8585 .92765
8.753243 4.238509 3.335526 3.131625 3.041718

10 .18904 .59904 .78655 .890005
4.289886 2.677350 2.442375 2.348195

20 .38378 .66204 .82372
2.408489 2.041931 1.926043

PFA = Q(zol2m,2n-2m) = Ixo(n-mm), Xo = (n-m)/(n-m + mzo)

Table entries: x0 (top), z0

TABLE 3-1. FALSE ALARM THRESHOLDS FOR F-STATISTIC.
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II

Figure 3-1 shows PD vs X, the noncentrality parameter, for n=50

and various values of PFA and m. This type of plot is also known as

"receiver operating characteristics" (ROC). As x-*O (-- dB), PD( ) PFA

and this trend can be observed on the left side of the figure. Also

the approach of PD(A) - 1 as x -* is seen on. the right.

What is interesting in this figure is that for all PFA'

PD(); m) < PD(X; m2) for mI > m2. (3-8)

This behavior is attributable to the loss of degrees of freedom in

estimating P and Z; the larger m given n, the smaller the "left over"

degrees of freedom 2(n-m). Thus, for example, if PFA = .I and a

P of .5 is desired then a larger value of X(6.9 dB) is required for m=2

than for m=l (5.6 dB). At first glance,.it might seem that there is a

disadvantage in increasing m (more data is bad)! However, as will be

discussed in Chapter 4, other things being equal, the increased m

automatically insures a X sufficiently larger to produce an improved

PD

Figure 3-2 illustrates how for fixed m(=3), the probability

of detection increases with greater n, the number of vector samples

observed. This trait is entirely expected since both degrees of

freedom and the amount of information (data) are proportional to n.

The most informative aspect of the figure is the demonstration that

as n increases, the curves converge to a "limit curve". This happens

because

PD(x;n,m,zO) - Q(x 212m,x), x2 = 2mz0  (3-9)

as n - w: that is, the noncentral F distribution approaches the

noncentral chi-squared distribution [ 6]. Therefore, we may write

S L
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Q(zol2m,-,x) = e a Qx2 (2mzol2m+2k) (3-10)
k=O

= m+k-1 (z~

-mzO A/2 /k2)k k- (mzr
-e (3-11)

k=O r=O

3.2 Asymptotic Distribution of Random Siqnal Test Statistic

In Appendix B it is shown that the moments of the statistic given

by (2-37) for testing the hypothesis H6 (that the data is uncorrelated

between sensors) can be written

m- 
1

Ez (n)r(n-) (3-12)
k=1

Therefore the characteristic function for the new variable

y = 2an tn z, 0.<0<1 (3-13)

is given by

y(t) = E{eJtY} = E{zj2tan}

m-1

= TT- r(n)r[Bn(1-2jt)-k + n(l-a)] (3-14)
k=1 r(n-k)r[sn(1-2jt) + n(1- )]

We may use the asymptotic expansion [2, p. 204]

,nr(x + h)-. ltn 2w + (x+h- - )nx - x2
L-1 r

-E r _x-r Br1 (h) + O(x-L) (3-15)

r=1

which x and h is bounded and the Br(-) are Bernoulli polynomials
r



[ [6, ch. 23]. Applying this expansion to (3-14) yields the expression

S(t) (l-2it)-a/
2 exp W r (l-2it)-r - 1] (3-16a)

r=1
m-i

where a = 2 F k = m(m-1) (3-16b)

k=1

and m-1

Wr = ( (,,)-r Br+l[n(l-)] - Br+l[n(l-B)-k] . (3-16c)

k=1

Since (1-2it) ",/2 is the characteristic function of a chi-squared variable

with v degrees of freedom, and w 1-, the cumulative distribution function
n

of y may be calculated using the asymptotic series

Asymptotic Order

Pry - = Pa 1

+ l(P a+2 - Pa)  n-I

1 2)P 2 ( 1 2)P -2
+(2 2 1 a+4-w1pa+2-(2- 2 1 an

1 3 12
+(w3+wlw2+ rI)Pa+6wl(w2+2w'I)pa+

4  3
1 _W2 ) 1w3) n

1 l(w2- 2l)Pa+2- (w3- lw2+ 6l)Pa

+ (3-17a)

where P P rx, u}. (3-17b)

This expression can be simplified considerably by choosing a value

for the arbitrary coefficient a in (3-13) so as to make w.=0. This value

turns out to be

n-(m+l)/3 (3-18)

n
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With this value the asymptotic series becomes

Pr{y<,ul = a + w2(Pa+4 -a) + w3(pa+6  'a

- + - 2P J2
+4(.+8 Pa 2 pa+8 2Pa+4 +Pal

+5(pa+i0 -a) + w2w13(pa+10 - a+6 - Pa+4 +a)]

+[w6pa+1 Pa + ww4(a+12 - a+8 - Pa+4 - a)

1 2 (PP +r2~ ~3 ra+12 -Pa+6 +Pa

+ 1 3 1P-3 -7.
a+12 a3 8 + 3P a4- P)a] + 0(n) (3-19)

To calculate the wr 's, we need the Bernoulli polynomials; these are listed

conveniently in Table 23.1 of [63. After the necessary algebra, we have

W2(m-2) (m-l)m(m+l)

w2 72[n-(m+1)/3] 2

(m-2)(m-1)m(m+1)(2m-1)
3 1620[n-(m+l)/3] 3

(m-2)(m-1)m(m+1)(M 2_m-7) (3-20)
w4 2160[n-(ni+1)/3)

Values of these coefficients for various numbers of sensors m and

of samples n are given in Table 3-3.

We observe from these expressions that w r=O for mi=2. This is

true because [6]

B r+1 (1) - B r 1(0) = r,'[-_,]

an B 2k+1l= 0, k > 0. (3-21)

Therefore for m-2, 0=(n-1)/n and a=2, with the results

2(n-l)tn z2 is 2 (3-22)



m 10 20 50 100 200

3 .004438 9.566(-4) 1.407(-4) 3.424(-5) 8.446(-6)

4 .02400 .004959 7.134(-4) 1.724(-4) 4.237(-5)

w2 5 .07813 .01543 .002170 5.206(-4) 1.275(-4)

10 .4123 .05124 .01185 .002854

20 1.079 .2307 .05356

3 1.138(-4) 1.139(-5) 6.426(-7) 7.712(-8) 9.447(-9)

4 8.960(-4) 8.415(-5) 4.592(-6) 5.453(-7) 6.646(-8)

w3 5 .003906 3.429(-4) 1.808(-5) 2.125(-6) 2.577(-7)

10 .02132 9.339(-4) 1.039(-4) 1.227(-5)

20 .04349 .004299 4.810(-4)

3 -1.969(-6) -9.151(-8) -1.981(-9) -1.172(-10) -7.133(-12)

4 5.760(-5) 2.459(-6) 5.090(-8) 2.971(-9) 1.795(-10)

w4 5 5.290(-4) 2.064(-5) 4.082(-7) 2.349(-8) 1.410(-9)

10 .004276 6.604(-5) 3.534(-6) 2.048(-7)

20 .007255 3.316(-4) 1.788(-5)

Table 3-3 COEFFICIENTS FOR ASYMPTOTIC
EXPANS ION



* For m=3, for example, the cumulative probability distribution

function (3-19) becomesI

Priy ' u} = Priz 2(n-4/3) <,e v}

=Pr x 2u< + [n43 [Pr X 2 u} Pr X 2 < U

2[nu}/- 3 r2 X2 u<

+ [n-43 T -Pr X14 'I u}) .Pr ix, < U +u-L Prix 2u}]

+ Q(n 5) (3-23)

The required x 2probabilities can be found in tables such as

Table 26.8 of [6], or calculated using

Prfx,:ul = 1 -e-/ K!/2 (3-24)

k=Q

as shown by program P-4 listed in the back of the report.

3.2.1 False Alarm Probability

We now wish to use the asymptotic distribution (3-19) to calculate

the false alarm probability for the multisensor problem with random signals.

The relation needed is

P FA = Priz >Z 0}

= 1 - Pr '< z

= 1- Pr z 2na 1z n

= 1 - PrOy s 2nBin z ;(3-25)

that is, the threshold z0is found by converting the value of u=u 0 for which

Pry < U0  1-PF by the operation

z0= exp~ 2% (3-26)
I..O



For large numbers of samples it is evident from (3-16b) (3-18), and (3-20)

that to an excellent approximation,

z exp (xP ())/(n m+1
= *- (3-27)

Also, since z(x) 11 +R- l-exP 1 trR 2  as shown in Section 2.2.1, we may

interpret (3-27) as a statement about the average values of the measured

intersensor correlations. That is z> z is equivalent to 1 trR2 > inzO , or

m(m-1) IPlaverage > (X1-PF, m(m-l) )/(n !) (3-28)

Both z0 and this 'W'average defined by (3-28) are given for n=100, 200

and several values of m in Table 3-4. For example, for m=5 sensors and

n=100, the ratio of the determinants of the estimated covariance matrix

under H' and H1 respectively has a 1% chance of exceeding the value 1.4672

when H6 is true; this value would be exceeded by an average inter-sensor

correlation coefficient of about 0.2 if H1 were true.

*!A I



a= X2 J- Aaz n 100 zn 200

m a=-1 0 l...PFraa 0~ lo 'laverage

2 2 4.60517 1.0476 .2157 1.0234 .1521

3 6 10.6446 1.1139 .1896 1.0550 .1336

p 1 4 12 18.5494 1.2076 .1773 1.0980 .1249

FA5 20 28.4120 1.3363 .1703 1.1543 .1198

10 90 107.565 3.0544 .1575 1.7296 .1103

20 380 415.728 87.3735 .1534 8.6195 .1065

2 2 9.21034 1.0975 .3050 -1.0474 .2151

3 6 16.8119 1.1858 .2383 1.0883 .1680

4 12 26.2170 1.3055 .2108 1.1413 .1484

pFA .01 5 20 37.5662 1.4672 .1958 1.2089 .1377

10 90 124.116 3.6270 .1692 1.8817 .1185

20 380 447.1 122.4285 .1591 10.1409 .1104

2 2 13.816 1.1498 .3736 1.0719 .2635

3 6 22.458 1.2556 .2754 1.1197 .1941

4 12 32.909 1.3975 .2362 1.1805 .1663

.01 5 20 45.315 1.5877 .2150 1.2572 .1513

10 90 137.208 4.1550 .1779 2.0114 .1246

20 380 470.9 158.1337 .1632 11.4719 .1133

TABLE 3-4. THRESHOLDS FOR RANDOM SIGNAL DETECTION.
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3.3 Calculation of Multivariate Test Statistic

The statistics z(X) derived in Chapter two were derived, for

analytical purposes, from forms originally expressed as ratios of the

determinants of sample covariance matrices. Computationally it is simpler

to calculate these determinants than to perform the matrix inversion called

for by the analytical form. In this section, the particular method used

for computing determinants is documented, and it is shown how to convert

thresholds for the F-statistic to those for the ratio of determinants.

3.3.1 Computing the Determinants of the Sample Covariance Matrices

A well known iterative method for computing the determinant of a

symmetric matrix is the "forward Doolittle, left side" scheme [15]. That

basic approach is adapted here for the complex, Hermitian sample covariance

matrices of the data. It is to successively reduce the dimension of the

determinant by subtracting a multiple of the first row from the other rows

so as to make the first column all zeros except for the "top" or "pivot"

element. For example, for a 3x 3 determinant, the algorithm works as

follows:

a11 a12 13 11 a12 a13

Sa 22 a 21
a21 a22 23 0 a22 - a- 12  23- a1-13

Sa31 a31

031 032 a33 -32" a 12 033- a1J13

Bll 612 Bll 12=ll= li821
P a1621 822 0 022 " oil 812

= a1181y1I. (3-28)



An mxm determinant is found by an algorithm which may be written

as follows:

Let D = IAI

Initially, D = DO = 1

For i = 1 ton.-1

i. * -1JA....-[

Pi a ii

For k = i + 1 to m

For i= i + 1 to m

a [il a [-] -a -i1a i1,ki k k,i it

next I

next k

next i

Finally, D = Dm_ 1  a [-]

3.3.2 Computer Implementation

The application of this algorithm to the complex-valued sample

covariance matrices involved in the detection problems under consideration

was tested by means of the simple simulation listed as program P-5.

In this program, a Gaussian random number generator (ostensibly producing

independent, zero-mean, unit variance numbers) was used to develop five-

dimensional complex data vectors,

The mean vector and H0 sample covariance matrix were "built" or

accumulated iteratively by the relations (n = number of samples = 10)

1 k =1 i xklik /n ,i=1,2,...m(=5) (3-29)



IR

,[k3" [k]

i,z = l,2,...m. (3-30)

[k] + /2n
o,J9 Xik

A diagram of the simulation is shown in Figure 3-3. The estimated

covariance matrix under the H, hypothesis is formed by subtracting one

half the outer product of the mean vector from the H0 hypothesis covariance

matrix. Then the determinants of these matrices are computed by the

algorithm given above, and the test statistic is taken to be (the real part

of) their ratio.

Figure 3-4 shows the results of the calculations. The ratio for

ten samples equals 1.813 for this particular set of random vectors. In

the next section it is shown how to calculate threshold against which

this number is to be tested.

3.3.3 Obtaining False Alarm Threshold for Ratio of Determinants

The statistic z(X) for which the false alarm detection probabilities

were computed in Section 3.1 related to the ratio of covariance determinants

by

- R(X) =1 + n_* -1
Ji1 1

= 1 + z(X)

n-m 2m,2(n-m)" (3-31)

$



V
i Generate random vectors (m X 1

F Outer product l c u u a e m a e t r

Accumulate
covariance matrix (m x m) NO

L hKL kn? 
2 Outer product

YES - *

IXX* = o

Matrix addition (m x m)

jDeterminant 1(m x m) Determinant (m x m)

test statistic

FIGURE 3-3. DIAGRAM OF MULTIVARIATE TEST STATISTIC CALCULATION.
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II

Therefore R > R0 implies

F > nm (R0 1) = F0 , (3-32a)

or

R > 1 + nm F0 = RO" (3-32b)

Now from Table 3-1 we find for n=10 and m=5 that the following values may

be determined:

PFA F0 (from table) R0

.1 2.32 2.16

.01 4.85 3.43

.001 8.75 5.38

Thus the test value, being less than R0 in each case results in the (correct)

acceptance of H0 at the 10%, 1%, and 0.1% levels.
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4.0 APPLICATION OF THEORETICAL RESULTS

Having learned how to calculate the probability of detection

PD for the multivariate detection approach we are now in a position

to apply these results to the detection problem. In this chapter,

the objective is to find reasonable values for parameters which describe

the detector performance and to show how the multivariate detector may

ba implemented.

4.1 Detection Performance Parameter, Deterministic Signals

It is convenient to extract a single parameter from the tables

and curves of Chapter 3, one which represents the performance of

detection (likelihood test) in achieving a useful PD while rejecting

false alarms. In receiver operating characteristics (ROC) for single

sensor detectors, the noncentrality parameter X which we have employed

becomes signal-to-noise ratio (SNR). It is common to describe the

detector's performance by specifying the SNR for which given PD and PFA

are obtained. For example, we might choose the pair

(PD9 PFA) = (.9, 10-2) (4-1)

and define the "minimum detectable signal" (MDS) as

MDS SNR such that PD(SNR) = .9 for PFA = 10 -2 (4-2)

and abbreviate this statement by the notation

MDS(.9) = SNR(.9,.o1)(or SNR(.9) with PFA := .01 understood)

(4-3)

Since the multivariate parameter X is analogous to SNR, we shall

extract values of A for which PD = .5 and .9 from the ROC data already

computed, then, in the subsequent sections, interpret this parameter

in terms of minimum detectable signal by employing certain assumptions

0 about signals and noise at the sensors.



As an example, from Figure 3-1 we see that for PFA = , n = 50, and

m= 2, a A of 6.9 dB is required to produce PD= .5 and a X of 11.3 dB

to give PD = .9. This we write shorthand as

x(.5) = 6.8 dB P = 1
for (4-4)

X(.9) = 11.3 dB n=50, m=2.

Table 4-1 gives X(.5) and '(*.9) values extracted from the

data generated in Chapter 3. The same information is plotted in

Figures 4-1, 4-2, and 4-3. From these curves we see that X(.5) and

x(.9) decrease to an asymptotic value with increasing n, and increase

with m (the number of sensors) for a given n. This is in keeping

with the discussion made of Figures 3-1 and 3-2 in the last chapter.

4.1.1 Structure of the Multivariate Detection Parameter

From Chapter 2 (or Appendix A) we recall that the multivariate

noncentrality parameter is
• k * -1

n _ (4-5)

where )j is the mean of the complex data vectors {4 } and E is the

covariance matrix of their independent real and imaginary parts. What

signal and noise models correspond to these quantities?

In Chapter 1, the complex data matrix elements were identified

with the in-phase and quadrature components of the received sensor wave-

forms with respect to a center frequency:

xik =u ik + JVik. (4-6a)

iCv

L p



SFA m 10 20 50 100 200

1 6.1 5.8 5.6 5.6 5.6

2 7.7 7.1 6.9 6.8 6.8

3 8.9 8.1 7.7 7.6 7.5

4 10.0 8.8 8.3 8.1 8.0.1

5 11.1 9.5 8.8 8.5 8.4

10 X 11.9 10.4 10.0 9.8

20 X X 12.5 11.7 11.3

1 10.3 9.7 9.3 9.2 9.2

2 11.9 10.9 10.4 10.2 10.2

3 13.1 11.8 11.1 10.9 10.8

.01 4 14.4 12.5 11.6 11.4 11.3

5 15.6 13.1 12.1 11.8 11.7

10 X 15.8 13.6 13.1 12.9

20 X X 15.8 14.7 14.3

1 12.8 11.9 11.4 11.3 11.2

2 14.4 13.0 12.3 12.1 12.0

3 15.7 13.9 12.9 12.7 12.6

.001 17.1 14.5 13.4 13.1 13.0

5 18.6 15.1 13.9 13.5 13.3

10 X 18.1 15.4 14.7 14.5

20 X X 17.5 16.2 15.8

Table 4-1(a) A(.5), REQUIRED VALUES OF DETECTION PARAMETER (dB)
for P0 = .5



PFA m 10 20 50 100 200
1 10.8 10.5 10.3 10.3 10.3

2 12.1 11.6 11.3 11.2 11.1

3 13.2 12.3 11.9 11.8 11.7

4 14.2 12.9 12.4 12.2 12.1

5 15.3 13.5 12.8 12.6 12.5

10 X 15.9 14.2 13.8 13.7

20 X X 16.2 15.3 14.9

1 13.6 12.9 12.6 12.5 12.4

2 15.0 14.0 13.5 13.3 13.2

3 16.2 14.8 14.0 13.8 13.7

.01 4 17.4 15.3 14.5 14.3 14.1

5 18.7 15.9 14.9 14.6 14.5

10 X 18.6 16.2 15.7 15.5

20 X X 18.3 17.2 16.7

1 15.6 14.6 14.1 13.9 13.8

2 17.1 15.6 14.9 14.6 14.5
3I

3 18.4 16.3 15.4 15.1 i5.0

.001 4 19.8 16.9 15.P 15.5 15.3

5 21.4 17.5 16.2 15.8 15.6

10 X 20.4 17.6 16.9 16.6

20 X X 19.6 18.3 17.8

; I

Table 4-1(b) '(.9), REQUIRED VALUES OF DETECTIOI PARAAETER (dB)

, for PD = .9
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or xi(tk) = Uik coswctk - Vik sin ctk

=Vu 2 + 7v7 tanV1 Vik (4-6b)
= 2 c[ctk + Uik

If we are considering only the possibility that a deterministic

signal is present in the background noise, then the covariance matrix

E =I1oirll is the covariance matrix of the zero-mean noise at the

sensors:

lir = E{ninr. (4-7)

The mean vector v = a + jb components then are due entirely to the

signal, when present, and we assume that the signal components (in-

phase and quadrature amplitudes or, alternatively, envelope and phase)

are constant (or nearly so) while the n samples are observed. Let

the signals at the sensor outputs have envelope values {S i} and phases

{6i}; then the elements of the mean vector can be identified as
= ai + Jb. = Si cosei + jSi sine.. (4-8)

Now, using air to denote elements of the inverse of E, we can

express the multivariate noncentrality parameter by

m m
_ 1 (ai - jb i ) air~a + jbr)

rrrr
=nZ oir[a b r) + j(ab - arbi)]

=(ir ir 1br r

i,r

$ i ,r

Since 1 is a symmetric matrix, so also is z" , and the summation over

the imaginary part is zero, leaving
S i



m m

).j nL. L.. S 1 rro~ (4-10)
* i=1 r=1

The subscript "M" stands for "multivariate".

For the special case in which the noise is independent from

sensor to sensor* (the covariance matrix is diagonal), (4-10) reduces

toA

X = njIoii S2
1=1

2n I 2mn x (average SNR). (4-11)

With this result as motivation, we choose to define minimum

detectable signal for the multivariate detector by

MDSM(D 1i 1MPD Ajjj(PD;MAn. (4-12)

MID n N(D' n



""p

4.1.2 Performance Predictions

Using the definitions for minimum detectable signal that have

been given, we may predict the performance of detection based on the

test statistics. For the multivariate detector, we use the numbers in

Table 4-1 to calculate

MDSM(PD)(dB) = X(PD; m, n)(dB) - 10 1og10(2nm). (4-13)

Similarly, for the detector based on a single-sensor detector output

the HIDS is

MDSPD)(dB) = X(PD; 1, n)(dB) - 10 log 10(2n). (4-14)

For example, for a false alarm probability of .001 and a detection

probability of .5, for m=10 sensors and n=50 samples, we have

MDSM(.5) = 15.4 dB - 10 loglO(1000) = -14.6 dB (4-15)

and for m=1,

MDS1 (.5) = 11.4 dB - 10 log10(100) = -8.6 dB. (4-16)

Thus in this example, the multivariate detector has a processing gain

of 6 dB over a single-sensor.

We may define a "multivariate processing gain" by

MPG A MDSI(PD)=MSM(PD)4-)

From (4-12) we may then write

A(PD; 1, n)
MPG =m A(PD) mg n) (4-18)

(P;m, n)

Using the numbers for xl(PD) and AM(PD) given in Table 4-1 the MPG is

calculated and plotted in Figures 4-4, 4-5, and 4-6 for the various

PFA values.
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1,

It is evident from these figures that detection based upon the

multivariate approach realizes appreciable gains over using a single

sensor. Gains from 2 to 9 d B are shown. The curves rise to an

asymptotic or limiting value as n, the number of observations, increases

and this value is directly proportional to m, the number of sensors.

On each figure we see that the MPG is higher for PD= .9 than for

P= .5, with the amount of the increase a function of PFA: the more

5tringent (smaller) the PFA required, the smaller the increase. By

comparing the figures we notice that MPG values tend to increase as

PFA decreases. This behavior is very interesting because it implies

that the multvariate detector achieves gain in two dimensions (PD' PFA );

the more difficult the detection criterion (either PD or PFA), the

better the multivariate approach is compared to single-sensor processing.

That is, this gain can be obtained for independent sensor noise terms.

If the off-diagonal components of the inverse covariance matrix Z are

nonzero, actually the xM is more or less than 2mn •SNR (see (4-10)), and

the performance of the multivariate approach can be slightly better or

worse than has been shown, depending on the amount of correlation between

sensor waveforms, and the signal phases (see Appendix C).

Comparison with Majority Decision Scheme. Analysis of the "majority

decision" method described in Section 2.1.3 results in the following

graphical comparison:



I .. . .. . . _ _ _ _ _

0120

C0

02

-2

2 3 4 5 10 20

m, number of sensors

Figure 4-7 GAIN OF MULTIVARIATE DETECTOR OVER MAJORITY SCHEME

These results show the combination of single-sensor detector

decisions (which assumes independent sensors) doing better than the

multivariate for small numbers of samples n or for large number of

sensors m. However, the comparison is not ideal since the multivariate

processor is "working harder" than necessary: even though the sensor

noises are independent (in this comparison), it is using up degrees of

freedom (see Section 3.1.2) estimating correlations. It seems reasonable

to expect that (a) a multivariate processor derived for the special case

of independent sensors will uniformly do better that the combination

scheme, and (b) when inter-sensor correlations are introduced, the

performance of the majority decison scheme will deteriorate, while the

multivariate will not. However, the distributions in either of these

cases have not been found, so these expectations remain conjectures.

4.2 Computer Program for Performing Multivariate Detection of
Deterministic Signals

In order to assess the implementation costs that may be associated

with the multivariate detection processing, a computer program in FORTRAN

was written and exercised. Limited simulations using the programs provided

verification of theoretical detection performance predictions.
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4.2.1 Program Requirements and Desirable Features

The basic requirement the program must satisfy has already been

indicated in Section 3.3; the program must accept n vectors {4k which

are m :x 1, accumulate mean vector and sample covariances, calculate determinants,

and form test statistics which are ratios of determinants. The basic

operation is specified by the equation

z "  12nfoI H1
ZX-2, z 0 (4-19)

2n f - n H 0

Although the detection problem has been formulated iOi this study as a "batch"

decision rather than a sequential or an iterative one, certain inherent

relationships in the functions to be computed allow accumulation of intermediate

results. Therefore, only a minimum of input data has to be stored.. Specifically,

the sample mean vector can be accumulated using

n n-1

k=1 k=1

In n-1] (4-20)

where

P+11 - I'] x+i/n, =0.

Similiarly, the H0 covariance can be accumulated using

n

2n 0  A0

n-1
- + 1k* = AOCn-l]+ ** (4-21)
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where
Ao[i+l] = Ao[i] + Xi+lXi+l*; A[O] = 0.

Certain economies are also possible due to the fact that the covariance

matrices are positive definite and Hennitian.

In practical detection systems it is desirable to have some control

over "integration time" or, in this context, the number of samples. For

weak, stationary signals one should like to make the number of samples high;

for strong, intermittent signals a relatively short observation time would

be selectable. Implementation of this second desirable feature is a simple

matter of storing a table of thresholds.

How to accommodate the variable integration time feature is suggested

by Figure 4-8. A 100-sample data base, for example, can be processed as

a whole (maximum integration time) or as ten 10-sample data bases in succession

(minimum integration time). In fact, both (plus in-between cases) can be

done in parallel, and the results of each displayed simultaneously in some

fashion.

Assuming simultaneous 10/20/50/100-sample detections, the basic

requirements for the multivariate detector computer implementation may be

summarized as in Figure .4-9.

4.2.2 Program Structure and Size

The basic requirements for computer implementation of the multivariate

detector summarized in Figure 4-9 are met by the FORTRAN program listed as

program P-6 in the back of this report. A flow diagram is presented in Figure

4-10. The symbology used is as follows:

1

* I
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STORAGE: (not including that required for arithmetic, subroutines, overhead)

DATA: one m x 1 input buffer for (complex) data vector

MEAN VECTORS: four m x 1 (complex) arrays

COVARIANCES: eight m x m (complex) arrays

ARITHMETIC: complex conjugation, complex and scalar arithmetic

SUBROUTINES:

Complex Complex Complex
Vector

Vector Vector Outer
Zeroing Addition Product

Complex IComplex Complex

Matrix Matrix I Matrix

Zeroing Addition Deterinant

TABLES: False alarm thresholds vs. PFA vs. number of samples

FIGURE 4-9. SUMMARY OF BASIC REQUIREMENTS FOR MULTIVARIATE DETECTOR
COMPUTER IMPLEMENTATION.
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START

lGenerate 10 data vectors, CI A

k- 10,20,30,..100

Form mean vector. CVX 10's detect data

Form covariance AV CAX

Accumulate 20's. SOs. 100's data

20's mean CVII - CVII + CVII 2
20' covarlnce CAXX CAXX 4 CAX

50's mean CVL -CVL 4CVX/5

50's covariance CAL CAL 4 CR1
100's mnean CYC - CVC *CVI/)O

100's covariance CAC CAC 4 CAl

i 10's detect
ICOX - CAl - 10*CVX-CVX
IRATX det(CAI)/det(CBI) Print RATl z[ CVX 0 - CAX - COX based on 10 samples

No 20 .40,
60,...

YES

20's detect

RArTXX det(CAXX)/det(CBXX) - Print RATXX z
CVII - 0 - CAXl CBII based on 20 samples

50,100 NO: generate next 10 vectors (A)

50's detect
CL -CAL - 50CVLCVL*
RATL =det(CAL)/det(CBL) Print RATL - z

CVL - 0 - CAL -CBL based on 50 samples

k. N0:generate next 10 vectors (A)

100

YES

100's detect

CBC = CAC - 10CVCCVC PitRI
RATC *det(CAC)/det(COC) basd nt 100 saz e

CVC z 0 -CAC CBC bsdo 0 ape

STOP

FIGURE 4-10 FLOW OF MULTI VARIATE DETECTOR PROGRAM.
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Program Variable Name .-athematical Equivalent

M("5) m, number of sensors

NSAMP n, number of samples

CX(M) (complex) data vector

CVX(M) (complex) j, sample mean (10's base)

CVXX(M) (complex) i, sample mean (50's base)

CVL(M) (complex) i, sample mean (20's base)

CVC(M) (complex) j, sample mean (100's base)

CAX(M,M) (complex) 2nf0, H0 covariance (10'.s base)

CAXX(M,M) (complex) 2nf0 , H0 covariance (20's base)

CAL(M,M) (complex) 2nj0, H0 covariance (50's base)

CAC(M,M) (complex) 2nZ0 , H0 covariance (100's base)

CBX(M,M) (complex) 2ni1 , H1 covariance (10's base)

CBXX(M,M) (complex) 2nzi, H, covariance (20's base)

CBL(M,M) (complex) 2n i , H1 covariance (50's base)

CBC(M,M) (complex) 2nE1, HI covariance (100's base)

RATX, RATXX, RATL, RATC z, computed test statistics

THRX, THRXX, THRL, THRC zO, stored thresholds

All vector and matrix operations (except for construction of CVX and CAX)

are performed using subroutines. The main programs and subroutines, compiled

as listed on an IBM 3033 FORTRAN system were sized for m=5 as follows:
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Program or Subprogram Source Lines Size

MAIN (incl!. data generation) 85 4442

CLRV (zero vector) 7 380

CLRM (zero matrix) 8 472

ADDV (add vectors) 7 588

ADDM (add matrices) 9 734

PRODV (vector product) 8 718

DETER (determinant) 15 910

complex arithmetic, random no. generator 500

8744
I/O, FORTRAN, other system overhead 21208

2952

The "size" is understood to be in units of 8-bit bytes, so that the

program itself requires about 8k on an 8-bit machine, or 4k on a 16-bit

machine.

As shown in the flow diagram, the program operation is straightforward:

10-sample mean vectors CVX and H0 covariance matrices CAX are constructed

from the input data (one input vector at a time). After incrementing the

other (20-, 50-, and 100-sample) mean and covariance accumulations, the H1

covariance CBX is formed, its determinant computed, and the test statistic z is

computed as the ratio RATX.

In lieu of decision-making the program prints out z and the threshold

z0 corresponding to a one percent false alarm probability.

FORTRAN conditional (IF) statements are used to "count" the number of

10-sample blocks of data which have been "observed," and appropriately

enable the 20-, 50-, and 100-sample detection computations at the proper

"time". After each detection operation the accumulated means and covariances

just used are reset.
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4.2.3 Comparison of Computed Multivariate Results with Theory

To exercise the multivariate detection computer program and to

collect simulated results for verification of the theory, a data base of 100

vectors with the following characteristics was generated and processed.

m=5, Z = I, .1 +j.

The signal components were chosen to be equal in phase (00) and amplitude

at each sensor. On separate runs the amplitude was made 0, .2, .3, .5, and

.9 to correspond to SNR's of --, -17, -13.5, -9, and -3.9 dB respectively.

The results of these simulations and their theoretical interpretation

may be displayed as shown in Figure 4-11. Detections for a particular

block of data are indicated by shading the portion of a diagram (similar to

Figure 4-9) which corresponds to that block in simulated time. Just to the

right of these diagrams, a tally of detections is provided (1/5 = one

detection in five trials, etc). The other experimental values presented are

the arithmetical average values of the test statistics compute, normalized

by the 1% false alarm threshold.

Thus, for example, on the run for which a SNR of -13.5 dB was

simulated, the 20's detection yielded a detection at the third data block only,

and the average value of the five statistics computed was 83.95% of the false

alarm threshold.

Along with the experimental data in Figure 4-1. theoretical predictions

are given for probability of detection and mean value of the test statistic

relative to the threshold. The PD values were determined by setting X= 2nm SNR

and using Table 3-2. The mean value of the test statistic was computed using

[14] V(V1+2)

-jv v(l (4-22)
'v*I~ lv2-2



EXPERIMENTAL RESULTS THEORY

Zavg Efz)
input scores and sample sets tally z0  P z
SNR

100 0/1 .9301 .01 .9344

0 0 50 0/2 .8873 .01 .8697

(S=0) 20 20 20 20 20 0/5 .6768 .01 .6810

S01 10101 1 101010 0/10 .3785 .01 .3847

(.2)0/1 .9851 .69 1.0288

-17 dB 1/2 .9394.2.98

]IliiiI ]I I 0/10 .4134 .02 .4275

1/1 1.0902 .99 1.1468

-13.5 dB 1/2 1.0406 .73 1.0694

(S=.3) 1/5 .8395 .18 .8422

*L..L0/10 .4604 .04 .4809

1/1 1.4653 .99+ 1.5243

-9 dB Or2/2 1.3932 .99 1.4243

(S=.5) NI3/5 1.1582 .65 1.1290

Ir IIIII 1/10 .6135 .12 .6519

1/1 2.8478 .99+ 2.8458

-3.9 dB 2/2 2.6996 .99+ 2.6667

(S=. 9) 5/5 2.2995 .99+ 2.1325

5/10 1.1048 .55 1.2503

FIGURE 4-11. EXPERIMENTAL RESULTS VS. THEORY FOR MULTIVARIATE DETECTOR,
PF = 01 and 5 sensors.
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to write

Ezj I+m 2(n-m)(2m + 2nm SNR)n-m 2m(2n - 2m - 2)

m1 +n-r-i (1 + nSNR). (4-23)

The zo's were obtained from Table 3-1 as described in Section 3.3.3,

resulting in

n I 10 20 50 100
z0 (m=5, PFA = 1%) 5.8486 1.9930 1.2805 1.1271 (4-24)

The experimental values are very close to theoretical predictions.

For example, for SNR = -9 dB, the 50- and 100-sample detection calculations

yielded "perfect scores"; theory predicted that d~tection was better than

99% probable. The 20-sample detection calculations scored 3/5 or 60%

compared to the theoretical 65% probability, and the 10% score of the

10-sample detector was consistent with a predicted PD of 12%.

Another way of viewing the results is given in Figure 4-12,

in which the theoretical and experimental average detection statistics

are compared as functions of SNR. The agreement is very good for this

parameter also, considering the relatively small sample sizes.
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3
t m 5 sensors; z I

100-sample vector data set

solid lines: theoretical
dots: simulated

z =1% F.A. threshold

z = multivariate detection
statistic

2 niform, constant signal
2-amplitude and phase (001
across sensors

ZO

n"10

n= =p aDetection

declared

° t!!
1 1

* 0
0 .5 1.0

S, signal amplitude

, [~ Io 11- 111 Ii i i 1 i I

-2o -15 -10 -5 -3

SNR in dB
I

Figure 4-12 AVERAGE (NORMALIZED) DETECTION STATISTIC vs. SNR,
PFA -.01



4.3 Modification to Computer Program for Detecting Random Signals

The computer program for detecting deterministic signals may be

easily modified in order to calculate test statistics for random signals.

All that is required is the following subroutine:

SUBROUTINE RHODET (CMAT, M, CI)

IMPLICIT COMPLEX (C)

C2 = (1., 0.)

DO1 I = 1, M

1 C2 = C2*CMAT(I,I)

Ri = REAL (C2/C1)

WRITE (6,2) RI

2 FORMAT (1X, 'CORRELATION DET RATIO =', F9.4)

RETURN

END

In response to the statement, for example CALL RHODET (CAX, M, CNX)

the subroutine calculates the ratio of the product of the diagonal elements

of the covariance matrix CAX to its previously computed determinant, CNX,

and prints it out.
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5.0 ASSESSMENTS AND RECOMMENDATIONS

The study is concluded in this present phase by reviewing what

has been done, assessing the results, and recommending further work.

5.1 Review

5.1.1 Summary of Work Performed

The mathematics of complex multivariate Gaussian statistics have

been applied to a model of a multisensor detection problem. Testing

hypotheses concerning the presence or absence of sources in the sensor

medium have been shown to be equivalent to computing statistics or

functions under the Gaussian noise model, corresponding to ratios of

determinants of sample covariance matrices.

For the case of deterministic signals whose magnitude and phase

remain constant during the period in which data are collected, the

multivariate test statistic has been shown to be in the family of F-

statistics. Using the properties of F-statistics distributions,

theoretical predictions have been made of SNR's required to detect the

signal while rejecting false alarms at a given level. The results confirm

the expectation that multivariate processing of sensor data requires a

significantly smaller SNR than does single-sensor processing. Also, a

non-ideal comparison indicates that mtltivariate processing is better than

a majority decision method for combining individual sensor decisions when

large numbers of samples are used.

A computer program implementing the multivariate detection processing

has been developed and tested, yielding simulation results compatible with

theory.

For the case of random signals, the multivariate test statistic has

been shown to have a distribution which approaches the chi-squared family

asymptotically. Computation of the random signal test statistic may be

accomplished by a very slight modification to the program for the detection

of deterministic signals.
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5.1.2 Summary of Multivariate Detection Performance

For deterministic (narrowband or broadband) signals the performance

of the multivariate detector may be summarized as follows:

Minimum Detectable Signal in dB (P ., PFA = .01,

z = diagonal)

number of samples
10 20 50 100 200

1 0.6 -3.1 -7.4 -10.5 -13.6

number 2 -1.0 -5.0 -9.5 -12.7 -15.8

of 3 -1.6 -6.0 -10.8 -14.0 -17.1
sensors

4 -1.6 -6.7 -11.5 -14.7 -17.9

5 -1.3 -7.1 -12.1 -15.4 -18.5

10 X -7.4 -13.8 -17.2 -20.5

20 X X -14.7 -18,8 -22.3

Multivariate Processing Gain in dB over

Single-Sensor Processing (PD=.9, PFA= 01, z =diagonal)

n
10 20 50 00 20

2 1.6 1.9 2.1 2.2 2.2

3 2.2 2.9 3.4 3.5 3.5

m 4 2.2 3.6 4.1 4.2 4.3

5 1.9 4.0 4.7 4.9 4.9

10 X 4.3 6.4 6.7 6.9

20 X X 7.3 8.3 8.7

i-.2
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5.2 Assessments

The multivariate detection approach is now assessed with regard

to detection performance, implementation, and compatibility issues.

5.2.1 Detection Performance

Clearly the multivariate detection approach, achieving a SNR

processing gain of around 2nm, is capable of performing very sensitive

detections. It is the ML solution for the unknown signal case.

It is instructive to note that a beamformer utilizing m sensors

and n samples, and processing the sum of m unknown signals in unknown

noise by the ML method shown for single sensors, gets better results than

the multivariate technique when steered at the target (equal signal

phases). The gain of the beamformer over the multivariate is, -for the

parameters used in Section 5.1.2., given below:

Beamformer Gain over Multivariate in dB

n-= 10 20 50 100 200

m= 2 1.4 1.2 0.9 0.8 0.8

3 2.6 1.9 1.4 1.3 1.3

4 3.8 2.4 1.9 1.8 1.7

5 5.1 3.0 2.3 2.1 2.1

10 X 5.7 3.6 3.3 3.1

0 20 X X 5.7 4.7 4.3

Thus it is seen that the multivariate detector is not far behind the

beamformer in performance when their number of samples is large. Moreover,

it must be noted that the multivariate detector can operate where good
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beamforming is not possible, such as sensor placements which are not

well known or subject to random variation. This is because in effect

the multivariate processor estimates the signal phases at:each sensor.

Whether the multivariate processing gain is sufficiently great

to be worth implementing is primarily a function of the effort required

to collect the data. On the one hand, combined single-sensor processing

or some "majority vote" of single-sensor decisions seems a simple

procedure; one does not have to push m channels through the same I/O or

FFT device in roughly the same time frame or buy a parallel processor.

On the other hand, if the detection scenario tolerates a non-real time

solution, such as time-sharing FFT and I/O devices, the only significant

additional burden the multivariate approach imposes is the need for

storing (buffering) the data segments from each sensor (rows in the X

matrix) until the entire data matrix is collected. In this connection

it should be noted again that the time alignment of sensor data is not

critical to the performance of the multivariate detection approach, since

for independent sensor noises, the sensor signal relative phases do not

affect it.

The comments above apply to the detection of deterministic signals.

Evaluation of the detection of random signals remains to be done.

5.2.2 Implementation

As demonstrated by the computer program for implementing the multi-

variate detector, the programming complexity and storage requirements are

quite modest. This assessment, however, is based upon the availability of

input data vectors (columns in the X matrix) in sequence. If the data

collection situation differs from this assumption, additional storage for

buffering will be required. Still, the advent of microprocessor-based,

parallel processing at low cost would make an m-channel data bus going into

a multivariate processor (another microprocessor) a strong possibility.



5.2.3 Compatibility

Since some detection scenarios there is a certain amount of

competition for computing resources among the various signal processing

tasks (detection, localization, tracking, etc.), it is appropriate

toassess the compatibility of the multivariate detection approach with

these other tasks. While it has not been shown in this work, in the

previous study [1] it was demonstrated that the statistical quantities

developed by the multivariate processor (means, variances, and covariances)

are also sufficient statistics for estimation of certain parameters.

Thus simultaneous detection and estimation can be carried out using

some of the same data processing.

For example, the diagonal elements of the sample covariance matrix

are estimates of noise power at each sensor and the off-diagonal elements

are inter-sensor correlations. The mean vector contains estimates of

the signals arriving at the sensors. Also, the single-channel test

statistic is an estimate of SNR at one sensor, while the multivariate

test statistic is a generalized SNR. Therefore, it appears that the

multivariate processor is very compatible with signal processing tasks

requiring the estimation of these quantities.

5.3 Recommendations

Further work recommended may be classified into two categories:

continuations and extensions.

5.3.1 Continuations

Recommended further work in a continuation of the present work:

(a) Theory:. Find receiver operating characteristics for random

signals. Deal with DFT components explicitly for both random and

deterministic signals. Obtain ROC for special cases of the ML detector

such as independent sensor noises.
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(b) Comparisons: Compare multivariate random signal detection

performance against that of combined two-sensor correlation detectors.

(c) Algorithms: Refine the program for computing test statistics

so that detection results for the various sample sizes (10/20/50/100)

are available every ten samples by using a "sliding window" concept.

Also, seek ways to iterate the computation of determinants so that

accumulation and storage of covariance matrices is not required.

(d) Validation: Test the multivariate detection approach against

simulated and actual multisensor data.

5.3.2 Extensions

Recommended further work extending the present work:

(a) Develop joint detection and estimation procedures which

utilize-.the same block of multisensor data. For example, joint random

signal (correlation) detection and localization via time delay estimation

are especially compatible. Also, a generalized multivariate detector

could be used to "educate" a beamformer and thereby obtain bearing

estimates.

(b) Study in detail the impact on software and hardware requirements

that implementation of multivariate processing would have, for a specific

multisensor scenario such as airborne ASW surveillance using sonobuoys.
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LIST OF PROGRAMS

P-i Incomplete Beta Function (False Alarm Probability)

P-2 F-Statistic: Probability of Detection

P-3 Asymptotic Distribution Coefficients

P-4 Chi-Square Cumulative Distribution

P-5 Tryout of Matrix and Vector Operations

P-6 Full-Scale Implementation of Multivariate Processing

S

$
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PROGRAM P-i. INCOMPLETE BETA FUNCTION (F-STATISTIC FALSE ALARM

PROBABILITY).

Ix(ba) = b + 1 + c2 + ..+ Ca-)

where Cr+j = (b + r)(1 - x)c /(r + 1), c0  1. (a>1)

hp 34C keystroke codes:

LBL A CHS STO I RCL 6 x
S1WT STO 4 RCL 4 ISG GTO 0
x*y RCL 0 RCL 1 GTO 2 LBL 1
STO 0 1 STO 6 GTO 1 RCL 5
RTN - LBL 0 LBL 2 RCL 3
LBL B EEX x RCL T RCL 1
STO 3 3 STO+5 INT y+R
1 + I RCL 4 x

STO 5 1 STO+6 R+ RTN
+ CLx

Routine A stores values of a and b.

To compute I, enter x, run routine B.

Example: Ix (8,2) = .10000 for x = .63164.

PROGRAM P-2. PROBABILITY OF DETECTION FOR F-STATISTIC.

//D20FXACT JOB1 (0591,0000 .... , , Y, 0), MILLER, CLASS=E
/*FETCH
/*NOT I FY
/ *NO'SETUP
//STEP1 EXEC FORTGCL'3
//FORT.SYSIN DD *

DIMENSION AM(20), PD(20),NN(1O),MM(1O),XX(7,5)
READ(5, 1) (NN(I), 1=1,5), (MM(1) I=1,7)

1 FORMAT( 1215)
READ(5,2) (All(I), 1=1, 11)

2 FCIRMAT(11F5.1)
READ(5,3) XX

3 . FCRIIAT (7F 1 ..6 )
WRITE(6,3) XX

* En:' 32 NA=1, 2
NO=NN(NA)
WRITE(6,4) NO

4 F'(:MAT(/1X, "N=", 13/2X, M= L=O -6DB -3DB ODB 3DB 6
CDB 8DB 1ODB 12DB 14DB 16DB")
DO 30 MC= 1,3

* MA=MM(MC)
M'=NO-MA
X=XX (I1C, NA)

(continued on next page)



PROGRAM P-2 (continued)

10 O) .'0 a. o

0 Ir- NI4t-I .
10 r- OD

% V) 0 b)'

cr r. C 0h0 -- • • ,,
Cd 0

0 C09"

-I

0 (V M 0 0
0 N qt 4. *10'If CO ILK ONO

NO * * W

-400.O

I It.1-' -. 0 - )o c; oU,--4.--'- t- _-.
-~ CI,.C)'

-4 Ch 4 0CJO'0
V 4 C. V.) In 1". 1
z0...( 4..

4 o- u) N n.co o

) 0. I"- l' b)z0
I-"~F <-.- 0 .J (V J I .,* " , ,

04 0 00 LLN 4Kb
0 1 -j1 -1I fa 0C')lnt- O+ . .- t 0J ,- -.- , 'o .,f N C O ',

f."C.' J"- .- " " " F . . . . .*

o l . ",r I . - - .z. - % 0 I N 0
0 M- *0 CL E . 0 , L N '

0 0 0 < - N I X•00 . N ...

an E4 X- 4 4 >- II r1 0CC 0

o C' 00 -IL
0<W -I . E 09 * 0 4 C

I - C IL v - r- - 0 In b;
+I x 1 0 - Q CiD -j (n %.6

-I - - IQ + --* *- 4 I. -
04 -- < 4 W. C4N 4 4.- - I (4 " *0 r V z

llh 11 .4 11 . 1ii Cii-Cif - .- r14 44- Z' -' Cr. o :g0z 'o 0
,c~ii-'-4'4All t114+ O0- t - - LZ C ' 0 ~ %

~~ '4I~~tI2~ tI Ii i. Cl LL 0-1 Q~ '4L C0 CcL0U- C, Ca..4.

W -O t.C .
CD 0

0 If) 0'~i t".-
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PROGRAM P-3. ASYMPTOTIC DISTRIBUTION COEFFICIENTS.

//D2AXCOEF JOB (0591,0000,,..,,, Y, 0), MILLER, CLASS=E
/*FETCH
/*NOTIFY
I *NOSETUP
//STEP'l EXEC FORTOCLO
/IFORT.SYSIN [D

DIMENSION XM(6),XN(6),D2(6,6),D:13(6,6),D4(6,6)
READ(5, 1) (XM(I),I=1,5), (XN(I), 1=1,5)

1 FORMAT(10F7.2)
[DO 2 NM=1,5
DO) 3 NN=1, 5
IF(XM(NM).GE.XN(NN)) GOTO 3
X=XN(NN)-CXM(NM)+1. )/3.
D2(NM,NN)=(XM(NM)-2.)*(XM(NM)-1.)*XM(NM)*(XM(NM)+-1.)/72./X**2

D4(NM,NN)=D2(NM,NN)(XM(NM)*:2-XM(NM)-7.)/30./X*2
3 CONTINUJE
2 CONTINUIE
4 FORMAT (6E12. 4)

WRITE(6,4) D2
WRITE(6,4) D3
WRITE(6,4) D4
STOP
END

//GO.SYSIN DD
3.. 4. 5. 10. 20. 10. 20. 50. 100. 200.



PROGRAM P-4 CHI-SQUARE CUMULATIVE DISTRIBUTION.
2

PrIX < x = P(xlv) =1-Q(xlv), where v is the number of degrees of freedom

and v/2- 1
*Q(xlv) =e~x/

2 I Wx2 )n/n!
n=O

hip 34C keystroke codes:

LBL A 2 + ISG e x
CLRE RCL 7 GTO1I STO 9
EEX ST107 X-Y RCL 1
3 1 RCL 7 RCL 9

+5ST08 RCLB8 2
STO I LBL I

X- +STO 8 CHS

Example: Q(447.11380) = .0100; Q(4.6051712) =.10000.

PROGRAM P-5 TRYOUT OF MATRIX AND VECTOR OPERATIONS.

//D2TRYOUT JOB (0591,0000, ...... Y, 0), MILLER, CLA5S=E
/*eFETCH
/*eNOTIFY
/ *NOSETLIP
//STEP1 EXEC FCIRTGCLG
//FORT.SYSIN DD *

IMPLICIT COMPLEX(C)
DIMENSION CX(5),CC(5,5),CMU(5),CCcI(5,5)

* CALL STARTR(65535')
DO 1 K=1,5
CMU(K)=CMPLX (0., 0.)
DO 2 Kl=1,5
CC (K, Ki)=CMPLX (0. ,0.)

CCO (14 K)=CMPLX (0.,0. )
2 CONTINUE
1 CONTINUE
C GENERATE RANDOM VECTORS, MEAN VECTOR, AND.XX* MATRI X

DO 8 N=1,10
DO 3 J= It5
A=RANDN(.)
B=RANDNC 1.)

S. CX(J)=CMPLXCA,EB)
CMU(J)=CML(J)+CX(J)/10.
DO 4 J1=1, J
CC(J,J1)=CX(J)*CONJGCX(J))/20.+CC(J,JI)
CC(J1, J)=CONJG(CC(J, Ji))

4 CONTINUIE
33 CONTINUE

j8 CONTINUE

(Continued on next page)



PROGRAM P-5 (continued)

WRITE(6, 12)

5 F')RMAT(lX, 10F9.3)
WRITE(6, 6)

6 FORMAT(//,IX,. MATrz;IX X X~
DO 7.1=1,5
WRITE(6,5) (CC(I,J),J=1,5)

7 CONTINUE
C GENERATE (X.-XO)(X-XO)* MATRIX

DO 13 J=1,5
DO 14 I=J,5
CCO(j, I)=cC(j,I)-CMU(J)*CINJG,(CMU(I))/2.
CCO(I,J)=CONJG(CCO(J, I))

14. CONTINUE
13 CONTINUE

WRITE(6, 15)

DO 16 1=1,5
WRITE(6,5) (CCO(I,J),J-1.5)

16 CONTINUE
C COMPUTE DETERMINANTS, RATIO

CIJET=CMPLX(1., 0.)
CDETO=CDET
DO 9 I=1,4
CPIV=CC( I, I)
CPIYO=CCO(I, I)
CDET=CDET*CP IV
CDETO=CDETO*CP IVO
JMIN=I+l
DO 10 J=JMIN5
Do 11 J1=JMIN,5

CCO(J,J1)=CCO(J,J1)-C.CO(I,J1)*CCO(J,I)/CP1VO
11 CONTINUE
10 CONTINUE

*9 CONTINUE
CDET=CDET*CC (5,5)
CDETO=CDETO*CCO (5,5)
CRAT=CDET /CDETO
WRITE(6, 17)

17 FORMAT (/,IX,' iDIE' AIIreI F;:ATrIO
WRITE(6,5) CDETVCDETOCRAT
STOP
END

//LKED.SYSLIB DD
/ / DO DSN=C591. SUIL I B,DI SPSHR



PROGRAM P-6 FULL-SCALE IMPLEMENTATION OF MULTIVARIATE PROCESSING.

//D2:IGONE JOB (0591, 0000,.. ,Y, 0),MILLER, CLASS=E
* /*FETCH

/*NOTIFY
/*NOSETLIP
//STEP1 EXEC FORTGCLO

//FRT.SYINDD
IMPLICIT COMPLEX(C)
DIMENSION CX(5),CVX(5),CAX(5,5),CE:-X(5,5),CAXX(5,5),CEBXX(5,5)
1,CAL(5,5),CEL(5,5),CAC(5,5),CBC(5,5),CVXX(5),CVL(5),CVC(5)
CALL STARTR (65539)
M=5
NSAMP=10
ENSAMP=FLOAT (NSAMP)
THRX5. 8486
THRXX=1.9930

TH-RL=1 .2805
THRC=1. 1271
WXX=2. *ENSAMP
WL=5. *ENSAMP
WC= 10. *ENSAMP
CALL CLRV(CVXX,M)
CALL CLRY(CVL,M)
CALL CLRY(CVC,M)
CALL CLRM(CAXX,M,M)
CALL CLRM(C:XX, M,M)
CALL CLRM(CAL, M,M)
CALL CLRM(C:L, M, M)
CALL CLRM(CAC:,M, M)
CALL CLRM(CB4C,M,M)
DO 1 I=1,5
DO 1 J=1,2
CALL CLRM(CAX,M,M)
CALL CLRM(CE:X,M,M)
CALL CLRV(CVXI,M)
DO 2 K=1,NSAMP
DO 2 K11l,M
A=RANDN(1. )+.3
B=RANDN(1.)
CX(K1 )=CMPLX(A, B)
CVX (Ki )=CVX (Ki )+CX (K ) /ENSAMP
DO 2 K2=1,K1
CAX(Kl,K2)=CX(Kl)*CONJG(CX(K2) )+CAX(Kl,K2)

2 CAX(K2, Ki)=CONJG(CAX(K,K2))
CALL ADDM(CAXX,CAX,MV 1., 1.)
CALL ADDV(CVXX,CVX,M, 1., .5)
CALL ADIM (CAL, CA X,M, 1 ., 1 .)
CALL ADDV(CVL,CVX,M, 1.,.2)
CALL ADDM (CAC, CAX, M, 1. ,1.)
CALL AD11yV(CVC, CVX, M,1I.-,.1 )

* (continued on next page)



C PROGRAM P.-6 (continued)

C TENS DETECT
C

CALL PRODiV(C:VX, M, CYX, M.CBX,ENSAMP)
CALL ADDM(CX,CAX,M-l., 1.)

* CALL DETER(CAX,M,CNX)
CALL DIETER(CBX, M,CSX)
RAT X=REAL(CNX/CSX)
WRITE(6,3) RATXUTHRX

3 Fa)RMAT(/, lX, "TENS:RATIO=",F9.4, lX, 'THRESHOLI=",F7.4)
C
C TWENTIES DETECT
C

IF(J.EQ.1) GOTO 4
CALL PRODV(CYXX, M, CVXX, M, CXX. WXX)
CALL CLRV(CVXX,M)
CALL ADDIM(CDXX,CAXX,M,-l., 1.)
CALL DETER(CAXX, M, CNXX)
CALL DETER(CBXX, M, CSXX)
RAT XX=REAL(CNXX/CSXX)
CALL CLRM(CAXX,M,M)
C.ALL CLRM(CE.XX,M,M)
WRITE(6,5) RATXX,THRXX

5FIJRMATC/, lX, TWENTIES:RATIO=',F9.4, lX, THRESHCLDI=.F7.4)
C
C FIFTIES DETECT

4 IFtI*J.EQ. 3. OR. J*I.EcJ.10) GOTO 8
GOTO 1

8, CALL PROD ( CVL, M, CYL, M, CL,WL)
CALL CLRV(CVL,M)
CALL ADDIM(CBL,CAL,M,-l., 1.)
CALL DIETER(CAL, M, CNL)
CALL DETER(CBL, M, CSL)
RATL=REAL (CNL/CSL)
CALL CLRM(CAL, M, M)
CALL CLRM(C:L, M, M)
WRITE(6, 6) RATL, THRL

6 FORMAT(/, lX, FIFTIES:RATIC'=,,F9.4, IX, 'THRES:-HOLI=",F7.4)
1 CONTINUE

* C
C HUNDREDS DETECT
C

CALL PRcIDV (CVC, M, CYC, M, CE, WC:)
CALL CLRY( CYC, M)
CALL ADDM(CEC,CAC,M,-l., 1.)
CALL DiETER(C:AC, M, CNC)
CALL DETER ( CEC,M, CSC)
RATC=REAL (CNC/CSC)
CALL CLRM(CAC, M,M)
CALL CLRM(C:C,M, M)
WRITE(6,7) RATC,THRC

7FO:RMAT(I, lX, HLINDREDS:RATIO=",F?. 4, iX, THRESHOLDi=,,F7.4
STOP
ENE,

(continued on next page)
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2 PROGRAM P-6 (continued)

C
C SUB:ROUT INES
C

SUBROUTINE DETER (CMAT, M, CDET)
IMPLICIT COMPLEX(C)
DIMENSION CMAT(M,M)
IMAX=M-1
CDET=(1..,O.)
DO 1 I=1,IMAX
CPIV=CMAT( I, I)

* CDET=CEIET*CP IV
JM IN= I+ 1
DO 1 J=JMIN,M
DO 1 J1=JMIN,M

1 CJAT(J,J1)=CMAT(J,J1)-CMAT(I,J)*C:MAT(J, I)/CPIV
CDET=CDET*CMAT(M, M)
RETIURN
END

C
SUBROUTINE PRODV (CVI, Ni,CV2, N2, CMAT, W)
IMPLICIT CC'MPLEX(C)
DIMENSION CV1(N1),CV2(N2),CMAT(N1,N2)

* DO I I=1,Nl
DO 1 J=1,N2

1 CMAT(I,J)=W*CV1(I)*CONJG(CV2(J))
RETURN
END

C
SUBROUT INE ADDM (CMAT 1, CMAT2, M, Wi,W2-)
IMPLICIT COMPLEX(C)
DIMENSION CMAT1(MM),CMAT2(M,M)
DO I I=1,M
DO 1 J=l,M
CMAT1 (I, J)=Wl*CMATI (I, J)+W2*CMAT2( I, J)

1 CONTINUE
RETURN
END

C
SUBROUT INE CLRM (CMATI,M, N)
IMPLICIT COMPLEX(C)
DIMENSION CMAT(M,N)
DO 1 I=1,M
DO) 1 J=i,N

1 CMAT(I, J)=(O.,0.)
RETURN

* END
C

SUBROUTINE CLRV( CV, M)
IMPLICIT COMPLEX(C)
DIMENSION CV(M)
DO 1 I=1,M

I CV(I)=(O.,O.)
RETLURN
END

(continued on next page)



PROGRAM P-6 (continued)

C
SUBROUTINE ADDV(CV1,CV2, M, W1,W2)
IMPLICIT COMPLEX(C)
DIMENSION CVI(M),CV2(M)
DO 11=I,M

I CVl(I)=WI*CVI(I)+W2*CV2(I)
RETURN
END

//LKED.SYSLIB DD
// DD DSN=C591.SUBLIB, DISP=SHR

OUTPUT FROM PROGRAM P-6 AS LISTED, SHOWING DETECTIONS (PFA= .01)
(5 sensors, S = .3 or SNR = -13.5 dB)

TENS:RATIO= 3.0335 THRESHOLD= 5.8486

TENS:RATIO= 1.6548 THRESHOLD= 5.8486

TWENTIES:RATIO= 1.6419 THRESHOLD= 1.9930

TENS:RATIO= 3.5713 THRESHOLD= 5.8486

TENS:RATIO= 3.8445 THRESHOLD= 5.8486

TWENTIES:RATIO= 1.9891 THRESHOLD= 1.9930

TENS:RATIO= 3.0560 THRESHOLD= 5.8486

• FIFTIES:RATIO= 1.5326 THRESHOLD= 1.2805

TENS:RATIO= 3.0316 THRESHOLD= 5.8486

-'TWENTIES:RATIO= 2.1577 THRESHOLD= 1.9930

TENS:RATIO= 1.5716 THRESHOLD= 5.8486

TENS:RATIO= 3.7013 THRESHOLD= 5.8486

TWENTIES:RATIO= 1.3103 THRESHOLD= 1.9930

TENS:RATIO= 1.7447 THRESHOLD= 5.8486

TENS:RATIO= 1.7189 THRESHOLD= 5.8486

TWENTIES:RATIO= 1.2670 THRESHOLD= 1.9930

* FIFTIES:RATIO= 1.1324 THRESHOLD= 1.2805

_" HUNDREDS: RATIO= 1.2309 THRESHOLD= 1.1271
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APPENDIX A

DISTRIBUTION OF MULTIVARIATE TEST STATISTIC FOR
COMPLEX DATA

(A) Following the approach of Anderson, we note that the sample

mean vector and sample covariance are independent. The original data

vector samples are

Ak = -Hk + Jyk- (m x 1), (A-i)

where samples are assumed independent and identically distributed as

multivariate normal, denoted

-Hk - N(a,.), 4k -N(b,z), (uk,_k independent). (A-2)

The sample covariance Z is such that

2ni = XX*- X0X 0  A

n n
nAA* . A 1 (A-3

IEik*k -H_ n E.jk A3k=l k=1

The data matrix can also be represented in a different coordinate system;

let B be an orthogonal, (n x n) matrix:

X = ZB', BB' = In; B-(b 1, b2,...,bn). (real) (A-4)

That is, there is another set of vectors such that

= X = n

41 Xh b i kxi
i=1

and these vectors are also independent. Let the nth column of B have

all components equal to 1/'W. Then

jen - -nk - N(O, E), kfn (A-5



* A - ZB'BZ* - n * Z Z* -nz

n n-1

Kk ik*An -n* .1 (A-6)
kk=1

Therefore U_ is independent of A because z is independent of the other

(B) Using these new vectors, the test statistic is
..n-1 ,

.hj_* A- 1  k - 1_

=n tr -k -k -3f-n"(A7

L(k=1

11

tr FaAk -k I I n(A-7)

Now the {Ak} are transformed by diagonalization:

Yk - Dzk where DED' = I. (A-8)

so that h @_* A" -1 tr[-1 _k Y Y ] (A-9)

where the {Ik have identity covariance matrices.

(C) A third traniformation is performed using a unitary matrix

(complex orthogonal) Q such that QQ* = I and resulting in the data

vectors

4k = qyk (A-10)

with the constraint

'In = QY- = (IYnI, o, o,...,)'. (A-11)

* IIThis makes the matrix Yn Yn* in (A-9) become a matrix with only one

nonzero component, causing the trace to be



SJ

n _ A-1 _ ) 1w 2. (A-12)

The element b11 of the inverse of B = Wk*

k=1

is given by

1
B1= b (A-13)

b1T 11 -1) B22-(1)

where B has been partitioned into

B = (A-14)
Lb B22 jI(1) 22J"

Therefore the test statistic is given by

-1 
1412

nA b (A-15)
bl - -(1)'22-1.(1)

The numerator can be seen as a noncentral chi-squared variate

I'In2 ~ x2(2m;x)

with noncentrality parameter

A=E{w,*} E{fy I =~ D'Q* Q D Ez

= n 2k D' D = n - P (A-16)

By Theorem 4.3.3 of Anderson the denominator of (A-15) is seen to be

(central) chi-squared, independent of the numerator:

1/bll - x2(2n-2m). (A-17)

Thus the ratio is an F-statistic, denoted

1 *A-1 ~ x2(2rx) = F F W. (A-18)
x2(2n-2m) n-m 2m,2(n-m)(^) ,A-.B



Appendix B

Moments of the Random Signal Test Statistic

(A completely analogous derivation for real data is given by Anderson

For n samples from an rn-dimensional distribution of zero-mean, complex,

jointly Gaussian variables with covariance matrix E the sample covariance

A = 2n £ (B-i)

k=1
has the Wishart distribution [2, 3)

p(A;n) =Km(E,n) JAIni etr1i- t ZA,

where

1mEn m rmml/ ~~~n1..(-~)IEI' B2

The moments therefore of

z = JAOl/IAl , AO diag(a ill a 22#. ..a.~) (t-3)

are given by

)Elzh =fdAIAOl JAI-' p(A;n)

K ( n h) J dA IA0 1h p A n h .(B-4)

Integrating first over the off-diagonal elements yields

E~zhKu K,E nh A B5
JzhJ. dAO A0 1h po(A 0;,n-h),



where po( ) is the joint pdf of the diagonal elements of A. For z non-

diagonal this density is extremely complex in expression [9, 10). However,

for

E = E0 .= diag (C11' 022'""°Om) (B-6)

these elements are independently distributed as

pl(a11; n-h) = K1(ai11 , n-h) a~il exp$a/2.}

(B-7)

and the integration is simple, producing

Km (ZO,n) m f

Enz} TTJ da i Ki(0ai,n-h)ai n - 1 expl-aii/2aiil
0 h)k=1 0i P-~i~Y 1

Km( O,n) m K, (ii, n-h)

- kT(o- = 1 Kl(ji-T n)-0 i =1 ii'

= r(n-h)r(n-h-1)...r.(n-h-m+1) [. _ m (1-8)

r(nr(n-l).. .r(n-m+l) • (n-8)

This expression may be further developed as

Ezh} r(n-h-i+r~nTT= r(n-i+llr(n-h)
1=2

m B(n-h-i+l. i-1) (B-9)

i=2 B(n-i+l, i-1)

where the beta function is

B(a, b) = r(a)r(b) (B-10)
* r (a+b)
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Appendix C

Effect of Correlation and Phase

on Multivariate Detection Parameter

From (4-10), the multivariate detection parameter (generalized

SNR) is given by
M m

AM : n a ir c er), (C-1)

i=1 v=1

where I tir =_r-1 is the inverse of the intersensor noise covariance

matrix and the ISi , eil are the amplitudes and phases of the signals

arriving at the sensors (or magnitude and phase of the DFT bin output).

If the phases are independent and uniformly distributed on some

interval (-A, A), then

.2
Elcos(e i  er)}= (C-2)

Thus we have

En 2 ii 2 irE Sa:' *n si h S Sa i (C-3)
EOJAMI s..jS 2 L..dr

I i r

and the second term vanishes for A = kw. A random sensor placement therefore,

such as shown in Figure C-i, could cause the second term to drop out regard-

less of the covariance matrix structure.

If the covariance matrix V can be represented by the case in which

the intersensor correlations are -all equal, then

- fpiar I - DaR Do $ (C-4)
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using

= diag(al, 02,...,am) (C-5)

and

Rr
(ir p. i r (C-6)

For this special case

- RD1 R'I D (C-7)a a

and

ir 00 2 r (C-8)lm (/aia r , i r( -)

where

B = 1+(m-2)p (C-9a)
(,-p)[1+(m-I)p]

and

' "P 
(C-gb)l-P)[l+(m-1)p]

In this instance the average detection parameter has the form

Ealxm;pl=no zI 2 /a2 + n tsina)2 ii) 2

= 2nm SNRavg

xU + (M-1)0(iA)2). (C-10)

£.



Appendix D

Distribution of Sample Correlation Coefficient (Squared)

The elements of the-sample covariance matrix 2n = A for m=2 have

the Wishart distribution

pl(A) = K(E,n) AIn - 2 etr-I E-1A (D-1)

where
= 22n lIJJnr(n)r(n-1). 

(D-2)

Explicitly (D-1) is written

(11 22-1a121 )f 2 - n- 2~ a2
P1(A) = (I 1P cl 1Y

41A 4n 7r2 2(1-2)]n r(n)r(n-.1) (3
ICY 1 c2(D-3)

Let a transformation of variables be defined by

Z = Ja12 1 2/a11a22

ucose = a12R u3

usine = a121  1Jj= U2 (D-4)

v = a22  
vz

The joint pdf of the new variables is
u2(n-2)+3 (1 -z)n-2 ( u2 pucoso

p2(z,u,e,v) = K .R exD -_-+ ucsv .
z vz OlO2 p 2 )*

JD-5)
In the next steps the unwanted variables are integrated out:

I
2W u2(n- 2)+3 (1-zin'2

P2 (z,u,ev)do = 2 1d( - z n

li t Ou2va

0 • e = p3 (z,u,v)

: (D-6)



du P3 (z~u~v) -- v d x IOLJx]e-xv

0 0

=r(n)wrK eG 1 F I(n;1; Y vz) p(,v

(D-7)

Go_ __ wK l z - (n)r(n) / 2Jdv P4(zlv) = r(-n2 n 2F 1(n~n;1; 4z)
0

- n) (1 2)n (lz)n-2 F (nn~p 2 ) p()

(0-8)

The complementary cumulative distribution function for z is

computed as follows:

Pr z >1 n}= dz p(z)

(1 P2 flfzn- 2

n

2 n ~ -q- 2k/1n-
= (n-i)! 75 ih- (n) (n)k dzz

= {~T~y (ni)~...d~nr ~B(k+1, n-1)1 1 _,(n-i k+1)
k=1

(D-9)

or

*0 2k
Q (n) ,_ 1P)n .P k! (n) 11_(n-1, k+1) (D-10)

I=
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Glossary of Notation

a real part of mean vector

A sample covariance matrix (2n)

b imaginary part of mean vector

Br(x) Bernoulli polynomial

B(ab) beta function

det(B) determinant of the matrix B

OFT discrete Fourier transform

E{x} mathematical expectation of quantity x

etr(B) exp{tr(B)}

F matrix of DFT components

F VIF-statistic with degrees of freedom v, and V2

1F1(a;b;x) confluent hypergeometric function

2 F (a,b;c;x) Gaussian hypergeometric function

Ho , H1  hypotheses

I identity matrix

Ix(ab) Pearson's incomplete beta function

A(X) likelihood ratio value

*noncentrality parameter, detection parameter

m number of sensors

MDS minimum detectable signal

ML maximum likelihood

MPG multivariate processing gain

tL mean vector

* n number of samples

pdf probability density function

P PD probability of detection

'ID



A.4

PFA probability of false alarm

Pr{A} probability of event A

Q (z) probability integral

ROC receiver operating characteristics

correlation coefficient

Z covariance matrix

SNR signal-to-noise ratio

tr (B) trace of matrix B

u, U real part of data vector, matrix

V, V imaginary part of data vector, matrix

x, X data vector, matrix

z, zo  statistic, test value

estimated value

b column vector

b', B' transpose of vector, matrix

b*, B* conjugate transpose of vector, matrix

JBI determinant of matrix B

Iki magnitude of vector

a.

A

S

I


